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I don’t guarantee that these solutions are error free! 
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Derivation of formula for
n
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Derivation of a general formula for 
n
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In general we see that to find the formula for power k we need to use ( )
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Using similar arguments as on the first two pages and using property of summation: 
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But we are looking for [ ]kS n  and since the formula (5) depends on [ ]kS n  and [ ]k 1S n+  (look at the 
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equating LHS of (6) and RHS of (1): 
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Binomial Theorem 
 
Binomial Theorem gives a general polynomial expansion for ( )na b+ : 

!
( )

( )! !

n
n n k k

k 0

n
a b a b

n k k
−

=

+ =
−∑  

 
(n! is called factorial of n, for definition see the bottom of the page) 
The theorem is usually proved using induction and the proof is not included here. 
 
Examples of use of Binomial Theorem:  
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Factorials 
 

n! is called a factorial of n and is defined as follows: 
! n×(n-1)×(n-2)×...×(1) for n>0n =  

 
Example: !3 3 2 1 6= ⋅ ⋅ =  
  
Some properties of factorials:  

! [( )!]n n n 1= ⋅ −  
1!=1 
0!=1 
(-x)!=0, where x>0 


